Download Machine Learning And Deep Learning With Python - eBooks (PDF)

Machine Learning And Deep Learning With Python


Machine Learning And Deep Learning With Python
DOWNLOAD

Download Machine Learning And Deep Learning With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Deep Learning With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Python Machine Learning


Python Machine Learning
DOWNLOAD
Author : Railey Brandon
language : en
Publisher: Roland Bind
Release Date : 2019-04-25

Python Machine Learning written by Railey Brandon and has been published by Roland Bind this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-25 with Computers categories.


★☆Have you come across the terms machine learning and neural networks in most articles you have recently read? Do you also want to learn how to build a machine learning model that will answer your questions within a blink of your eyes?☆★ If you responded yes to any of the above questions, you have come to the right place. Machine learning is an incredibly dense topic. It's hard to imagine condensing it into an easily readable and digestible format. However, this book aims to do exactly that. Machine learning and artificial intelligence have been used in different machines and applications to improve the user's experience. One can also use machine learning to make data analysis and predicting the output for some data sets easy. All you need to do is choose the right algorithm, train the model and test the model before you apply it on any real-world tool. It is that simple isn't it? ★★Apart from this, you will also learn more about★★ ♦ The Different Types Of Learning Algorithm That You Can Expect To Encounter ♦ The Numerous Applications Of Machine Learning And Deep Learning ♦ The Best Practices For Picking Up Neural Networks ♦ What Are The Best Languages And Libraries To Work With ♦ The Various Problems That You Can Solve With Machine Learning Algorithms ♦ And much more... Well, you can do it faster if you use Python. This language has made it easy for any user, even an amateur, to build a strong machine learning model since it has numerous directories and libraries that make it easy for one to build a model. Do you want to know how to build a machine learning model and a neural network? So, what are you waiting for? Grab a copy of this book now!



Hands On Transfer Learning With Python


Hands On Transfer Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31

Hands On Transfer Learning With Python written by Dipanjan Sarkar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.


Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.



Python Machine Learning For Beginners


Python Machine Learning For Beginners
DOWNLOAD
Author : Finn Sanders
language : en
Publisher: Roland Bind
Release Date : 2019-05-22

Python Machine Learning For Beginners written by Finn Sanders and has been published by Roland Bind this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-22 with Computers categories.


Imagine a world where you can make a computer program learn for itself? What if it could recognize who is in a picture or the exact websites that you want to look for when you type it into the program? What if you were able to create any kind of program that you wanted, even as a beginner programmer, without all of the convoluted codes and other information that makes your head spin? This is actually all possible. The programs that were mentioned before are all a part of machine learning. This is a breakthrough in the world of information technology, which allows the computer to learn how to behave, rather than asking the programmer to think of every single instance that may show up with their user ahead of time. it is taking over the world, and you may be using it now, without even realizing it. If you have used a search engine, worked with photo recognition, or done speech recognition devices on your phone, then you have worked with machine learning. And if you combine it with the Python programming language, it is faster, more powerful, and easier (even for beginners) to create your own programs today. Python is considered the ultimate coding language for beginners, but once you start to use it, you will never be able to tell. Many of the best programs out there use this language behind them, and if you are a beginner who is ready to learn, this is a great place to start. If you have a program in mind, or you just want to be able to get some programming knowledge and learn more about the power that comes behind it, then this is the guidebook for you. ★★Some of the topics that we will discuss include★★ ♦ The Fundamentals of Machine Learning, Deep learning, And Neural Networks ♦ How To Set Up Your Environment And Make Sure That Python, TensorFlow And Scikit-Learn Work Well For You ♦ How To Master Neural Network Implementation Using Different Libraries ♦ How Random Forest Algorithms Are Able To Help Out With Machine Learning ♦ How To Uncover Hidden Patterns And Structures With Clustering ♦ How Recurrent Neural Networks Work And When To Use ♦ The Importance Of Linear Classifiers And Why They Need To Be Used In Machine Learning ♦ And Much More! This guidebook is going to provide you with the information you need to get started with Python Machine Learning. If you have an idea for a great program, but you don't have the technical knowledge to make it happen, then this guidebook will help you get started. Machine learning has the capabilities, and Python has the ease, to help you, even as a beginner, create any product that you would like. If you want to learn more about how to make the best programs with Python Machine learning, buy the book today!



Deep Learning With Python


Deep Learning With Python
DOWNLOAD
Author : Chao Pan
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2016-06-14

Deep Learning With Python written by Chao Pan and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-14 with categories.


***** BUY NOW (will soon return to 24.77 $) *****Are you thinking of learning deep Learning using Python? (For Beginners Only) If you are looking for a beginners guide to learn deep learning, in just a few hours, this book is for you. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach, which would lead to better mental representations.Step-by-Step Guide and Visual Illustrations and ExamplesThis book and the accompanying examples, you would be well suited to tackle problems, which pique your interests using machine learning and deep learning models. Book Objectives This book will help you: Have an appreciation for deep learning and an understanding of their fundamental principles. Have an elementary grasp of deep learning concepts and algorithms. Have achieved a technical background in deep learning and neural networks using Python. Target UsersThe book designed for a variety of target audiences. Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and deep learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Introduction What is Artificial Intelligence, Machine Learning and Deep Learning? Mathematical Foundations of Deep Learning Understanding Machine Learning Models Evaluation of Machine Learning Models: Overfitting, Underfitting, Bias Variance Tradeoff Fully Connected Neural Networks Convolutional Neural Networks Recurrent Neural Networks Generative Adversarial Networks Deep Reinforcement Learning Introduction to Deep Neural Networks with Keras A First Look at Neural Networks in Keras Introduction to Pytorch The Pytorch Deep Learning Framework Your First Neural Network in Pytorch Deep Learning for Computer Vision Build a Convolutional Neural Network Deep Learning for Natural Language Processing Working with Sequential Data Build a Recurrent Neural Network Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: if you want to smash Deep Learning from scratch, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Can I have a refund if this book doesn't fit for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email.***** MONEY BACK GUARANTEE BY AMAZON ***** Editorial Reviews"This is an excellent book, it is a very good introduction to deep learning and neural networks. The concepts and terminology are clearly explained. The book also points out several good locations on the internet where users can obtain more information. I was extremely happy with this book and I recommend it for all beginners" - Prof. Alain Simon, EDHEC Business School. Statistician and DataScientist.



Deep Learning With Python Second Edition


Deep Learning With Python Second Edition
DOWNLOAD
Author : Francois Chollet
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-21

Deep Learning With Python Second Edition written by Francois Chollet and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-21 with Computers categories.


Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. You'll learn directly from the creator of Keras, François Chollet, building your understanding through intuitive explanations and practical examples. Updated from the original bestseller with over 50% new content, this second edition includes new chapters, cutting-edge innovations, and coverage of the very latest deep learning tools. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects.



Python Machine Learning


Python Machine Learning
DOWNLOAD
Author : Andrew Park
language : en
Publisher: Andrew Park
Release Date : 2021-04-27

Python Machine Learning written by Andrew Park and has been published by Andrew Park this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-27 with categories.


★ 55% OFF for Bookstores! NOW at $ 13.49 instead of $ 29.97! LAST DAYS! ★ Do you want to learn how to design and master different Machine Learning algorithms quickly and easily?Your Customers Will Love This Amazing Guide! Today, we live in the era of Artificial Intelligence. Self-driving cars, customized product recommendations, real-time pricing, speech and facial recognition are just a few examples proving this truth. Also, think about medical diagnostics or automation of mundane and repetitive labor tasks; all these highlight the fact that we live in interesting times. From research topics to projects and applications in different stages of production, there is a lot going on in the world of Machine Learning. Machines and automation represent a huge part of our daily life. They are becoming part of our experience and existence. This is Machine Learning. Artificial Intelligence is currently one of the most thriving fields any programmer would wish to delve into, and for a good reason: this is the future! Simply put, Machine Learning is about teaching machines to think and make decisions as we would. The difference between the way machines learn and the way we do is that while for the most part we learn from experiences, machines learn from data. Starting from scratch, Python Machine Learning explains how this happens, how machines build their experience and compounding knowledge. Data forms the core of Machine Learning because within data lie truths whose depths exceed our imagination. The computations machines can perform on data are incredible, beyond anything a human brain could do. Once we introduce data to a machine learning model, we must create an environment where we update the data stream frequently. This builds the machine's learning ability. The more data Machine Learning models are exposed to, the easier it is for these models to expand their potential. Some of the topics that we will discuss inside include: What is Machine Learning and how it is applied in real-world situations Understanding the differences between Machine Learning, Deep Learning, and Artificial Intelligence Supervised learning, unsupervised learning, and semi-supervised learning The place of Regression techniques in Machine Learning, including Linear Regression in Python Machine learning training models How to use Lists and Modules in Python The 12 essential libraries for Machine Learning in Python What is the Tensorflow library Artificial Neural Networks And Much More! While most books only focus on widespread details without going deeper into the different models and techniques, Python Machine Learning explains how to master the concepts of Machine Learning technology and helps you to understand how researchers are breaking the boundaries of Data Science to mimic human intelligence in machines using various Machine Learning algorithms. Even if some concepts of Machine Learning algorithms can appear complex to most computer programming beginners, this book takes the time to explain them in a simple and concise way. Would You Like To Know More? Buy It NOW And Let Your Customers Get Addicted To This Amazing Book!



Deep Learning


Deep Learning
DOWNLOAD
Author : Rob Botwright
language : en
Publisher: Rob Botwright
Release Date : 2024

Deep Learning written by Rob Botwright and has been published by Rob Botwright this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Computers categories.


Introducing the Ultimate AI Book Bundle: Deep Learning, Computer Vision, Python Machine Learning, and Neural Networks Are you ready to embark on an exhilarating journey into the world of artificial intelligence, deep learning, and computer vision? Look no further! Our carefully curated book bundle, "DEEP LEARNING: COMPUTER VISION, PYTHON MACHINE LEARNING AND NEURAL NETWORKS," offers you a comprehensive roadmap to AI mastery. BOOK 1 - DEEP LEARNING DEMYSTIFIED: A BEGINNER'S GUIDE 🚀 Perfect for beginners, this book dismantles the complexities of deep learning. From neural networks to Python programming, you'll build a strong foundation in AI. BOOK 2 - MASTERING COMPUTER VISION WITH DEEP LEARNING 🌟 Dive into the captivating world of computer vision. Unlock the secrets of image processing, convolutional neural networks (CNNs), and object recognition. Harness the power of visual intelligence! BOOK 3 - PYTHON MACHINE LEARNING AND NEURAL NETWORKS: FROM NOVICE TO PRO 📊 Elevate your skills with this intermediate volume. Delve into data preprocessing, supervised and unsupervised learning, and become proficient in training neural networks. BOOK 4 - ADVANCED DEEP LEARNING: CUTTING-EDGE TECHNIQUES AND APPLICATIONS 🔥 Ready to conquer advanced techniques? Learn optimization strategies, tackle common deep learning challenges, and explore real-world applications shaping the future. 🎉 What You'll Gain: · A strong foundation in deep learning · Proficiency in computer vision · Mastery of Python machine learning · Advanced deep learning skills · Real-world application knowledge · Cutting-edge AI insights 📚 Why Choose Our Book Bundle? · Expertly curated content · Beginner to expert progression · Clear explanations and hands-on examples · Comprehensive coverage of AI topics · Practical real-world applications · Stay ahead with emerging AI trends 🌐 Who Should Grab This Bundle? · Beginners eager to start their AI journey · Intermediate learners looking to expand their skill set · Experts seeking advanced deep learning insights · Anyone curious about AI's limitless possibilities 📦 Limited-Time Offer: Get all four books in one bundle and save! Don't miss this chance to accelerate your AI knowledge and skills. 🔒 Secure Your AI Mastery: Click "Add to Cart" now and embark on an educational adventure that will redefine your understanding of artificial intelligence. Your journey to AI excellence begins here!



Python Machine Learning


Python Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher:
Release Date : 2019-12-09

Python Machine Learning written by Sebastian Raschka and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-09 with categories.


Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning. Key Features Third edition of the bestselling, widely acclaimed Python machine learning book Clear and intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices Book Description Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Master the frameworks, models, and techniques that enable machines to 'learn' from data Use scikit-learn for machine learning and TensorFlow for deep learning Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more Build and train neural networks, GANs, and other models Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who This Book Is For If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.



Machine Learning With Python


Machine Learning With Python
DOWNLOAD
Author : Matt Algore
language : en
Publisher:
Release Date : 2021-01-07

Machine Learning With Python written by Matt Algore and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-07 with categories.




Machine Learning With Python


Machine Learning With Python
DOWNLOAD
Author : Mark Coding
language : en
Publisher:
Release Date : 2020-11-27

Machine Learning With Python written by Mark Coding and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-27 with Computers categories.


Are you tired of taking risks, hoping things will pay off big but you are always worried about the risks? Have you been hearing about some of the buzzwords in the world of business like data science, data analysis, and machine learning, but worry they will be too hard for you to catch onto and learn more about? Are you looking for ways to know more about your industry, what products to release, and how to gain a competitive edge overall, without all of the risks? If this sounds like something you have dealt with, then machine learning for Python is the best option for you! This guidebook is going to dive into all of the parts of this that you need to know right now! Inside, we will explore what machine learning is all about, how to add it into Python, and so many of the algorithms and steps you need to really make all of this a reality for your needs. Inside this guidebook, be prepared to take some of the basics of Python and machine learning, and turn yourself into an expert, someone who knows with certainty that all of your decisions are the right ones, and who has data and information to back them all up. Some of the different topics we will discuss in this guidebook to help make this a reality, and to ensure we can learn and make good predictions, includes: -The basics of machine learning and artificial intelligence. -How to work with Python and machine learning to get started with all the options that work with this topic. -How to work with some of the different Python machine learning algorithms out there for you to choose from. -How to work with a model of machine learning and go through the process of having your computer learn on its own. -More examples of how to work with Python and machine learning together. -The importance of working with neural networks and what all of this can mean to your code. -A look at deep learning and data science that can take your machine learning to the next level. -The steps you need to know to get started with data Preprocessing. -A look at where machine learning and more will be able to help lead us to the future. Working with machine learning for Python is an important topic a lot of businesses are diving into now more than ever. They see the value of working with data science, and what this process can do for them in terms of their success and their sound business decisions. When you are ready to learn how to use machine learning for Python for some of your business and data science needs, make sure to take a look at this guidebook to get started