Explainable Ai
DOWNLOAD
Download Explainable Ai PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Explainable Ai book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Explainable Ai Interpreting Explaining And Visualizing Deep Learning
DOWNLOAD
Author : Wojciech Samek
language : en
Publisher: Springer Nature
Release Date : 2019-09-10
Explainable Ai Interpreting Explaining And Visualizing Deep Learning written by Wojciech Samek and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-10 with Computers categories.
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Hands On Explainable Ai Xai With Python
DOWNLOAD
Author : Denis Rothman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-31
Hands On Explainable Ai Xai With Python written by Denis Rothman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-31 with Computers categories.
Resolve the black box models in your AI applications to make them fair, trustworthy, and secure. Familiarize yourself with the basic principles and tools to deploy Explainable AI (XAI) into your apps and reporting interfaces. Key FeaturesLearn explainable AI tools and techniques to process trustworthy AI resultsUnderstand how to detect, handle, and avoid common issues with AI ethics and biasIntegrate fair AI into popular apps and reporting tools to deliver business value using Python and associated toolsBook Description Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex. Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications. You will build XAI solutions in Python, TensorFlow 2, Google Cloud’s XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle. You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces. By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI. What you will learnPlan for XAI through the different stages of the machine learning life cycleEstimate the strengths and weaknesses of popular open-source XAI applicationsExamine how to detect and handle bias issues in machine learning dataReview ethics considerations and tools to address common problems in machine learning dataShare XAI design and visualization best practicesIntegrate explainable AI results using Python modelsUse XAI toolkits for Python in machine learning life cycles to solve business problemsWho this book is for This book is not an introduction to Python programming or machine learning concepts. You must have some foundational knowledge and/or experience with machine learning libraries such as scikit-learn to make the most out of this book. Some of the potential readers of this book include: Professionals who already use Python for as data science, machine learning, research, and analysisData analysts and data scientists who want an introduction into explainable AI tools and techniquesAI Project managers who must face the contractual and legal obligations of AI Explainability for the acceptance phase of their applications
Introduction To Explainable Ai Xai
DOWNLOAD
Author : Robert Johnson
language : en
Publisher: HiTeX Press
Release Date : 2024-10-27
Introduction To Explainable Ai Xai written by Robert Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-27 with Computers categories.
"Introduction to Explainable AI (XAI): Making AI Understandable" is an essential resource for anyone seeking to understand the burgeoning field of explainable artificial intelligence. As AI systems become integral to critical decision-making processes across industries, the ability to interpret and comprehend their outputs becomes increasingly vital. This book offers a comprehensive exploration of XAI, delving into its foundational concepts, diverse techniques, and pivotal applications. It strives to demystify complex AI behaviors, ensuring that stakeholders across sectors can engage with AI technologies confidently and responsibly. Structured to cater to both beginners and those with an existing interest in AI, this book covers the spectrum of XAI topics, from model-specific approaches and interpretable machine learning to the ethical and societal implications of AI transparency. Readers will be equipped with practical insights into the tools and frameworks available for developing explainable models, alongside an understanding of the challenges and limitations inherent in the field. As we look toward the future, the book also addresses emerging trends and research directions, positioning itself as a definitive guide to navigating the evolving landscape of XAI. This book stands as an invaluable reference for students, practitioners, and policy makers alike, offering a balanced blend of theory and practical guidance. By focusing on the synergy between humans and machines through explainability, it underscores the importance of building AI systems that are not only powerful but also trustworthy and aligned with societal values.
Explainable Ai Xai For Sustainable Development
DOWNLOAD
Author : Lakshmi D
language : en
Publisher: CRC Press
Release Date : 2024-06-26
Explainable Ai Xai For Sustainable Development written by Lakshmi D and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-26 with Technology & Engineering categories.
This book presents innovative research works to automate, innovate, design, and deploy AI fo real-world applications. It discusses AI applications in major cutting-edge technologies and details about deployment solutions for different applications for sustainable development. The application of Blockchain techniques illustrates the ways of optimisation algorithms in this book. The challenges associated with AI deployment are also discussed in detail, and edge computing with machine learning solutions is explained. This book provides multi-domain applications of AI to the readers to help find innovative methods towards the business, sustainability, and customer outreach paradigms in the AI domain. • Focuses on virtual machine placement and migration techniques for cloud data centres • Presents the role of machine learning and meta-heuristic approaches for optimisation in cloud computing services • Includes application of placement techniques for quality of service, performance, and reliability improvement • Explores data centre resource management, load balancing and orchestration using machine learning techniques • Analyses dynamic and scalable resource scheduling with a focus on resource management The reference work is for postgraduate students, professionals, and academic researchers in computer science and information technology.
Explainable Ai With Python
DOWNLOAD
Author : Leonida Gianfagna
language : en
Publisher: Springer Nature
Release Date : 2021-04-28
Explainable Ai With Python written by Leonida Gianfagna and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-28 with Computers categories.
This book provides a full presentation of the current concepts and available techniques to make “machine learning” systems more explainable. The approaches presented can be applied to almost all the current “machine learning” models: linear and logistic regression, deep learning neural networks, natural language processing and image recognition, among the others. Progress in Machine Learning is increasing the use of artificial agents to perform critical tasks previously handled by humans (healthcare, legal and finance, among others). While the principles that guide the design of these agents are understood, most of the current deep-learning models are "opaque" to human understanding. Explainable AI with Python fills the current gap in literature on this emerging topic by taking both a theoretical and a practical perspective, making the reader quickly capable of working with tools and code for Explainable AI. Beginning with examples of what Explainable AI (XAI) is and why it is needed in the field, the book details different approaches to XAI depending on specific context and need. Hands-on work on interpretable models with specific examples leveraging Python are then presented, showing how intrinsic interpretable models can be interpreted and how to produce “human understandable” explanations. Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are “opaque.” Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future. Taking a practical perspective, the authors demonstrate how to effectively use ML and XAI in science. The final chapter explains Adversarial Machine Learning and how to do XAI with adversarial examples.
Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer Nature
Release Date : 2021-12-15
Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning written by Uday Kamath and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-15 with Computers categories.
This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning. --Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU This is a wonderful book! I’m pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I’ve seen that has up-to-date and well-rounded coverage. Thank you to the authors! --Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level. Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist. Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group
Explainable Ai In Healthcare
DOWNLOAD
Author : Mehul S Raval
language : en
Publisher: CRC Press
Release Date : 2023-07-17
Explainable Ai In Healthcare written by Mehul S Raval and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-17 with Medical categories.
This book combines technology and the medical domain. It covers advances in computer vision (CV) and machine learning (ML) that facilitate automation in diagnostics and therapeutic and preventive health care. The special focus on eXplainable Artificial Intelligence (XAI) uncovers the black box of ML and bridges the semantic gap between the technologists and the medical fraternity. Explainable AI in Healthcare: Unboxing Machine Learning for Biomedicine intends to be a premier reference for practitioners, researchers, and students at basic, intermediary levels and expert levels in computer science, electronics and communications, information technology, instrumentation and control, and electrical engineering. This book will benefit readers in the following ways: Explores state of art in computer vision and deep learning in tandem to develop autonomous or semi-autonomous algorithms for diagnosis in health care Investigates bridges between computer scientists and physicians being built with XAI Focuses on how data analysis provides the rationale to deal with the challenges of healthcare and making decision-making more transparent Initiates discussions on human-AI relationships in health care Unites learning for privacy preservation in health care
Explainable Ai And User Experience Prototyping And Evaluating An Ux Optimized Xai Interface In Computer Vision
DOWNLOAD
Author : Georg Dedikov
language : en
Publisher: GRIN Verlag
Release Date : 2023-05-16
Explainable Ai And User Experience Prototyping And Evaluating An Ux Optimized Xai Interface In Computer Vision written by Georg Dedikov and has been published by GRIN Verlag this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-16 with Computers categories.
Master's Thesis from the year 2023 in the subject Computer Science - SEO, Search Engine Optimization, grade: 1,0, University of Regensburg (Professur für Wirtschaftsinformatik, insb. Internet Business & Digitale Soziale Medien), language: English, abstract: This thesis presents a toolkit of 17 user experience (UX) principles, which are categorized according to their relevance towards Explainable AI (XAI). The goal of Explainable AI has been widely associated in literature with dimensions of comprehensibility, usefulness, trust, and acceptance. Moreover, authors in academia postulate that research should rather focus on the development of holistic explanation interfaces instead of single visual explanations. Consequently, the focus of XAI research should be more on potential users and their needs, rather than purely technical aspects of XAI methods. Considering these three impediments, the author of this thesis derives the assumption to bring valuable insights from the research area of User Interface (UI) and User Experience design into XAI research. Basically, UX is concerned with the design and evaluation of pragmatic and hedonic aspects of a user’s interaction with a system in some context. These principles are taken into account in the subsequent prototyping of a custom XAI system called Brain Tumor Assistant (BTA). Here, a pre-trained EfficientNetB0 is used as a Convolutional Neural Network that can divide x-ray images of a human brain into four classes with an overall accuracy of 98%. To generate factual explanations, Local Interpretable Model-agnostic Explanations are subsequently applied as an XAI method. The following evaluation of the BTA is based on the so-called User Experience Questionnaire (UEQ) according to Laugwitz et al. (2008), whereby single items of the questionnaire are adapted to the specific context of XAI. Quantitative data from a study with 50 participants in each control and treatment group is used to present a standardized way of quantifying the dimensions of Usability and UX specifically for XAI systems. Furthermore, through an A/B test, evidence is presented that visual explanations have a significant (α=0.05) positive effect on the dimensions of attractiveness, usefulness, controllability, and trustworthiness. In summary, this thesis proves that explanations in computer vision not only have a significantly positive effect on trustworthiness, but also on other dimensions.
Explainable Ai Foundations Methodologies And Applications
DOWNLOAD
Author : Mayuri Mehta
language : en
Publisher: Springer Nature
Release Date : 2022-10-19
Explainable Ai Foundations Methodologies And Applications written by Mayuri Mehta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-19 with Technology & Engineering categories.
This book presents an overview and several applications of explainable artificial intelligence (XAI). It covers different aspects related to explainable artificial intelligence, such as the need to make the AI models interpretable, how black box machine/deep learning models can be understood using various XAI methods, different evaluation metrics for XAI, human-centered explainable AI, and applications of explainable AI in health care, security surveillance, transportation, among other areas. The book is suitable for students and academics aiming to build up their background on explainable AI and can guide them in making machine/deep learning models more transparent. The book can be used as a reference book for teaching a graduate course on artificial intelligence, applied machine learning, or neural networks. Researchers working in the area of AI can use this book to discover the recent developments in XAI. Besides its use in academia, this book could be used by practitioners in AI industries, healthcare industries, medicine, autonomous vehicles, and security surveillance, who would like to develop AI techniques and applications with explanations.
Practical Explainable Ai Using Python
DOWNLOAD
Author : Pradeepta Mishra
language : en
Publisher:
Release Date : 2022
Practical Explainable Ai Using Python written by Pradeepta Mishra and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.
Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers. You'll begin with an introduction to model explainability and interpretability basics, ethical consideration, and biases in predictions generated by AI models. Next, you'll look at methods and systems to interpret linear, non-linear, and time-series models used in AI. The book will also cover topics ranging from interpreting to understanding how an AI algorithm makes a decision Further, you will learn the most complex ensemble models, explainability, and interpretability using frameworks such as Lime, SHAP, Skater, ELI5, etc. Moving forward, you will be introduced to model explainability for unstructured data and natural language processing-related tasks. Additionally, the book looks at counterfactual explanations for AI models. Practical Explainable AI Using Python shines the light on deep learning models, rule-based expert systems, and computer vision tasks using various XAI frameworks. You will: Review the different ways of making an AI model interpretable and explainable Examine the biasness and good ethical practices of AI models Quantify, visualize, and estimate reliability of AI models Design frameworks to unbox the black-box models Assess the fairness of AI models Understand the building blocks of trust in AI models Increase the level of AI adoption.