Download Advances In Machine Learning - eBooks (PDF)

Advances In Machine Learning


Advances In Machine Learning
DOWNLOAD

Download Advances In Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



New Advances In Machine Learning


New Advances In Machine Learning
DOWNLOAD
Author : Yagang Zhang
language : en
Publisher: BoD – Books on Demand
Release Date : 2010-02-01

New Advances In Machine Learning written by Yagang Zhang and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-02-01 with Games & Activities categories.


The purpose of this book is to provide an up-to-date and systematical introduction to the principles and algorithms of machine learning. The definition of learning is broad enough to include most tasks that we commonly call “learning” tasks, as we use the word in daily life. It is also broad enough to encompass computers that improve from experience in quite straightforward ways. The book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners. The wide scope of the book provides a good introduction to many approaches of machine learning, and it is also the source of useful bibliographical information.



Advances In Machine Learning Research And Application 2013 Edition


Advances In Machine Learning Research And Application 2013 Edition
DOWNLOAD
Author :
language : en
Publisher: ScholarlyEditions
Release Date : 2013-06-21

Advances In Machine Learning Research And Application 2013 Edition written by and has been published by ScholarlyEditions this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-21 with Computers categories.


Advances in Machine Learning Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Artificial Intelligence. The editors have built Advances in Machine Learning Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Artificial Intelligence in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Machine Learning Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.



Advances In Machine Learning Deep Learning Based Technologies


Advances In Machine Learning Deep Learning Based Technologies
DOWNLOAD
Author : George A. Tsihrintzis
language : en
Publisher: Springer Nature
Release Date : 2021-08-05

Advances In Machine Learning Deep Learning Based Technologies written by George A. Tsihrintzis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-05 with Technology & Engineering categories.


As the 4th Industrial Revolution is restructuring human societal organization into, so-called, “Society 5.0”, the field of Machine Learning (and its sub-field of Deep Learning) and related technologies is growing continuously and rapidly, developing in both itself and towards applications in many other disciplines. Researchers worldwide aim at incorporating cognitive abilities into machines, such as learning and problem solving. When machines and software systems have been enhanced with Machine Learning/Deep Learning components, they become better and more efficient at performing specific tasks. Consequently, Machine Learning/Deep Learning stands out as a research discipline due to its worldwide pace of growth in both theoretical advances and areas of application, while achieving very high rates of success and promising major impact in science, technology and society. The book at hand aims at exposing its readers to some of the most significant Advances in Machine Learning/Deep Learning-based Technologies. The book consists of an editorial note and an additional ten (10) chapters, all invited from authors who work on the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into five parts, namely (i) Machine Learning/Deep Learning in Socializing and Entertainment, (ii) Machine Learning/Deep Learning in Education, (iii) Machine Learning/Deep Learning in Security, (iv) Machine Learning/Deep Learning in Time Series Forecasting, and (v) Machine Learning in Video Coding and Information Extraction. This research book is directed towards professors, researchers, scientists, engineers and students in Machine Learning/Deep Learning-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent Machine Learning/Deep Learning-based technologies. An extensive list of bibliographic references at the end of each chapter guides the readers to probe further into the application areas of interest to them.



Advances In Financial Machine Learning


Advances In Financial Machine Learning
DOWNLOAD
Author : Marcos Lopez de Prado
language : en
Publisher: John Wiley & Sons
Release Date : 2018-02-02

Advances In Financial Machine Learning written by Marcos Lopez de Prado and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-02 with Business & Economics categories.


Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.



Advances In Machine Learning Research And Application 2012 Edition


Advances In Machine Learning Research And Application 2012 Edition
DOWNLOAD
Author :
language : en
Publisher: ScholarlyEditions
Release Date : 2012-12-26

Advances In Machine Learning Research And Application 2012 Edition written by and has been published by ScholarlyEditions this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-26 with Computers categories.


Advances in Machine Learning Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Machine Learning. The editors have built Advances in Machine Learning Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Machine Learning in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Machine Learning Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.



Machine Learning Paradigms


Machine Learning Paradigms
DOWNLOAD
Author : Maria Virvou
language : en
Publisher: Springer
Release Date : 2019-03-16

Machine Learning Paradigms written by Maria Virvou and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-16 with Technology & Engineering categories.


This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: • Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; • Using learning analytics to predict student performance; • Using learning analytics to create learning materials and educational courses; and • Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.



Advances In Machine Learning Deep Learning Based Technologies


Advances In Machine Learning Deep Learning Based Technologies
DOWNLOAD
Author : George A. Tsihrintzis
language : en
Publisher:
Release Date : 2022

Advances In Machine Learning Deep Learning Based Technologies written by George A. Tsihrintzis and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.


As the 4th Industrial Revolution is restructuring human societal organization into, so-called, "Society 5.0", the field of Machine Learning (and its sub-field of Deep Learning) and related technologies is growing continuously and rapidly, developing in both itself and towards applications in many other disciplines. Researchers worldwide aim at incorporating cognitive abilities into machines, such as learning and problem solving. When machines and software systems have been enhanced with Machine Learning/Deep Learning components, they become better and more efficient at performing specific tasks. Consequently, Machine Learning/Deep Learning stands out as a research discipline due to its worldwide pace of growth in both theoretical advances and areas of application, while achieving very high rates of success and promising major impact in science, technology and society. The book at hand aims at exposing its readers to some of the most significant Advances in Machine Learning/Deep Learning-based Technologies. The book consists of an editorial note and an additional ten (10) chapters, all invited from authors who work on the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into five parts, namely (i) Machine Learning/Deep Learning in Socializing and Entertainment, (ii) Machine Learning/Deep Learning in Education, (iii) Machine Learning/Deep Learning in Security, (iv) Machine Learning/Deep Learning in Time Series Forecasting, and (v) Machine Learning in Video Coding and Information Extraction. This research book is directed towards professors, researchers, scientists, engineers and students in Machine Learning/Deep Learning-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent Machine Learning/Deep Learning-based technologies. An extensive list of bibliographic references at the end of each chapter guides the readers to probe further into the application areas of interest to them.



Advances In Machine Learning For Big Data Analysis


Advances In Machine Learning For Big Data Analysis
DOWNLOAD
Author : Satchidananda Dehuri
language : en
Publisher: Springer Nature
Release Date : 2022-02-24

Advances In Machine Learning For Big Data Analysis written by Satchidananda Dehuri and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-24 with Technology & Engineering categories.


This book focuses on research aspects of ensemble approaches of machine learning techniques that can be applied to address the big data problems. In this book, various advancements of machine learning algorithms to extract data-driven decisions from big data in diverse domains such as the banking sector, healthcare, social media, and video surveillance are presented in several chapters. Each of them has separate functionalities, which can be leveraged to solve a specific set of big data applications. This book is a potential resource for various advances in the field of machine learning and data science to solve big data problems with many objectives. It has been observed from the literature that several works have been focused on the advancement of machine learning in various fields like biomedical, stock prediction, sentiment analysis, etc. However, limited discussions have been carried out on application of advanced machine learning techniques in solving big data problems.



Advances In Machine Learning And Data Science


Advances In Machine Learning And Data Science
DOWNLOAD
Author : Damodar Reddy Edla
language : en
Publisher: Springer
Release Date : 2018-05-16

Advances In Machine Learning And Data Science written by Damodar Reddy Edla and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-16 with Technology & Engineering categories.


The Volume of “Advances in Machine Learning and Data Science - Recent Achievements and Research Directives” constitutes the proceedings of First International Conference on Latest Advances in Machine Learning and Data Science (LAMDA 2017). The 37 regular papers presented in this volume were carefully reviewed and selected from 123 submissions. These days we find many computer programs that exhibit various useful learning methods and commercial applications. Goal of machine learning is to develop computer programs that can learn from experience. Machine learning involves knowledge from various disciplines like, statistics, information theory, artificial intelligence, computational complexity, cognitive science and biology. For problems like handwriting recognition, algorithms that are based on machine learning out perform all other approaches. Both machine learning and data science are interrelated. Data science is an umbrella term to be used for techniques that clean data and extract useful information from data. In field of data science, machine learning algorithms are used frequently to identify valuable knowledge from commercial databases containing records of different industries, financial transactions, medical records, etc. The main objective of this book is to provide an overview on latest advancements in the field of machine learning and data science, with solutions to problems in field of image, video, data and graph processing, pattern recognition, data structuring, data clustering, pattern mining, association rule based approaches, feature extraction techniques, neural networks, bio inspired learning and various machine learning algorithms.



Advances In Machine Learning I


Advances In Machine Learning I
DOWNLOAD
Author : Jacek Koronacki
language : en
Publisher: Springer
Release Date : 2009-12-05

Advances In Machine Learning I written by Jacek Koronacki and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-05 with Computers categories.


Professor Richard S. Michalski passed away on September 20, 2007. Once we learned about his untimely death we immediately realized that we would no longer have with us a truly exceptional scholar and researcher who for several decades had been inf- encing the work of numerous scientists all over the world - not only in his area of expertise, notably machine learning, but also in the broadly understood areas of data analysis, data mining, knowledge discovery and many others. In fact, his influence was even much broader due to his creative vision, integrity, scientific excellence and exceptionally wide intellectual horizons which extended to history, political science and arts. Professor Michalski’s death was a particularly deep loss to the whole Polish sci- tific community and the Polish Academy of Sciences in particular. After graduation, he began his research career at the Institute of Automatic Control, Polish Academy of Science in Warsaw. In 1970 he left his native country and hold various prestigious positions at top US universities. His research gained impetus and he soon established himself as a world authority in his areas of interest – notably, he was widely cons- ered a father of machine learning.